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Abstract

Capturing document images is a common way for digi-

tizing and recording physical documents due to the ubiqui-

tousness of mobile cameras. To make text recognition eas-

ier, it is often desirable to digitally flatten a document im-

age when the physical document sheet is folded or curved.

In this paper, we develop the first learning-based method to

achieve this goal. We propose a stacked U-Net [25] with in-

termediate supervision to directly predict the forward map-

ping from a distorted image to its rectified version. Because

large-scale real-world data with ground truth deformation

is difficult to obtain, we create a synthetic dataset with ap-

proximately 100 thousand images by warping non-distorted

document images. The network is trained on this dataset

with various data augmentations to improve its general-

ization ability. We further create a comprehensive bench-

mark1 that covers various real-world conditions. We eval-

uate the proposed model quantitatively and qualitatively on

the proposed benchmark, and compare it with previous non-

learning-based methods.

1. Introduction

Document digitization serves as an important means to

preserve existing printed documents, making them easier to

access anywhere at anytime. Traditionally, documents are

digitized with flat-bed scanners, which are non-portable, ex-

pensive devices. Recently, with the increasing popularity of

mobile cameras, taking pictures of physical documents has

become the easiest way for scanning physical documents.

Once captured, images can be further processed by text de-

tection and recognition pipelines for content analysis and

information extraction.

A common practical problem when taking document im-

ages is that the document sheets are not in an ideal condi-

tion for scanning: they may be curved, folded or crumpled,

or laying on a complex background. Think about a crum-

pled receipt taken out from a pocket. All these factors could

1http://www.cs.stonybrook.edu/˜cvl/docunet.html

(a) (b)
Figure 1. Document image unwarping and its usefulness. (a)

shows some results from our network. The top row shows in-

put images and the bottom shows the outputs. (b) Our network

greatly improves the effectiveness of state-of-the-art text detection

systems [10]: more words (shown in green) can be detected from

the rectified document image (bottom) than the original folded one

(top).

cause significant problems for automatic document image

analysis procedures down-stream, as shown in Fig. 1. It is

thus desirable to digitally flatten such documents in the cap-

tured images.

Flattening document images has been addressed before,

using various approaches. Some vision systems rely on

carefully designed, well calibrated hardware such as stereo

cameras [35, 29], or structured light projectors [1, 21] to

measure the 3D distortion of the documents. They produce

high quality results, but the additional hardware limits their

application. Other work [28, 36] obviate the need for extra

hardware by utilizing multi-view images to reconstruct the

3D shape of distorted document sheets. Others aim to re-

cover the rectified document by analyzing a single image,

based on various hand-crafted low-level features such as il-

lumination/shading [32, 37], text-lines [27, 20] etc.

This paper presents a novel learning-based method to re-

cover arbitrarily curved and folded paper documents cap-

tured in the wild. Unlike previous techniques, our method
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is the first end-to-end learning-based method to directly pre-

dict document distortion. Previous methods have only used

learning for feature extraction, while the final image recov-

ery was still based on traditional optimization procedures.

Our method instead relies on Convolutional Neural Net-

works (CNNs) for end-to-end image recovery. Compared

to optimization-based methods, the feedforward network

is very efficient in the testing phase. Moreover, this data-

driven method can be better generalized to many document

types (text, figures, handwriting, etc.) if proper training data

is provided.

We formulate this task as seeking the appropriate 2D im-

age warping that can rectify a distorted document image.

Our network predicts a mapping field that moves a pixel

in the distorted source image S(u, v) to (x, y) in the result

image D:

D(x, y) = S(u, v). (1)

Formulating the problem in this way, we find this task

shares some commonalities with semantic segmentation.

For the latter, the network assigns a class label to each pixel.

Similarly, our network assigns a 2-dimensional vector to

each pixel. This inspires us to use U-Net [25] in our net-

work structure, which is widely known for its success in

semantic segmentation. To adapt it to our regression prob-

lem, we define a novel loss function to drive the network to

regress the coordinate (x, y) in D for each pixel in S.

Obtaining large-scale data with ground truth labels is the

first challenge for deep supervised learning. To train our

network, we need to obtain a large number of document

images distorted in various degrees as input, as well as the

corresponding deformations that can lead to perfect rectifi-

cations. Currently no such dataset exists. Obtaining ground

truth deformation in the physical world is very challenging.

We thus resort to synthetic data for training. We synthe-

size 100K images by randomly warping perfectly flat doc-

ument images, so that the perturbed image is the input and

the mesh we used to warp the image is the inverse deforma-

tion that we aim to recover.

There is no comprehensive benchmark publicly available

to evaluate document unfolding. Previous methods either

evaluate on a small number of images, or the datasets only

contain one or two types of distortion such as smooth curv-

ing. We fill this vacuum by creating a benchmark of 130

images that contains large variations in document type, de-

gree and type of distortion, as well as capture conditions.

Our primary contributions include:

i) The first end-to-end, learning-based approach for doc-

ument image unwarping. We propose a stacked U-

Net [25] with intermediate supervision. It is trained in

an end-to-end manner to predict the forward mapping

that can rectify the distorted document.

ii) A technique to synthesize images of curved or folded

paper documents. Using this method, we create a

large-scale dataset containing approximately 100K im-

ages for training.

iii) A diverse evaluation benchmark dataset with ground

truth, on which we evaluate our method and compare

against previous methods.

2. Related Work

Rectifying documents has been studied in the literature.

We roughly categorize previous methods into two groups:

3D shape reconstruction. To reconstruct the 3D shape

of the paper document, Brown and Seales [1] used a visible

light projector-camera system. Zhang et al. [38] utilized a

more advanced range/depth sensor, and also took into con-

sideration the physical properties of paper for shape recov-

ery. More recently, Meng et al. [21] set up a platform with

two structured laser beams to acquire the document curl.

Besides additional hardware, other work relied on multi-

view images for 3D shape reconstruction. Ulges et al. [29]

computed the disparity map between two images via image

patch matching. Yamashita et al. [35] parameterized the

3D shape with Non-Uniform Rational B-Splines (NURBS).

Tsoi and Brown [28] did not require a well calibrated stereo

vision system. They utilized the boundary information from

multi-view images and composed these images together to

generate the rectified image. Similarly, Koo et al. [13] used

two uncalibrated images from different views to measure

3D shape by SIFT matching. Östlund et al. [24] proposed a

mesh parameterization method that can reconstruct the 3D

shape of a deformable surface given correspondences with

a reference image. Recently, You et al. [36] reconstructed

the 3D shape of the document by modeling the creases on

the paper from multi-images.

Shape from low-level features. Low level features in-

clude illumination/shading, text lines etc. Wada et al. [32]

formulated the problem using Shape from Shading (SfS).

The distorted document exhibits varying shading under a

directional light source. Courteille et al. [5] extended this

work by using a camera instead of a scanner and estimate

perspective shape from shading. Zhang et al. [37] pro-

posed a more robust SfS system that can handle shadows

and background noise. Some other methods relied on an-

alyzing the document content. A prevalent strategy is to

trace textlines [8, 30, 18, 21, 11, 16], under the assumption

that textlines in the rectified document should be horizon-

tal and straight. In particular, Cao et al. [2] modeled the

curved document on a cylinder and Liang et al. [14] used a

developable surface. Tian and Narasimhan [27] optimized

over textlines as the horizontal clue and character strokes as

the vertical clue to produce the 3D mesh. These works can

be seen as special cases of the broader Shape from Texture
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Regular grid mesh Perturbed mesh Image of distorted document Tiled with background
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Figure 2. Synthetic distorted document image in 2D.

problem (SfT) [34, 19, 9]. Recently, Das et al. [6] applied

a CNN to detect paper creases for rectification. However,

CNN was used only as one step in their optimization pro-

cess rather than in an end-to-end manner.

Our proposed method can be classified into the second

category. It however differs from all previous methods as

a purely data-driven method. The network is trained end-

to-end to predict the forward mapping for the warping, so

no hand-crafted low-level features are used. There is no

optimization process during the test phase. Our network has

two benefits: i) it can handle various document types and

conditions as long as large-scale training data is provided.

ii) it can be deployed as an efficient method in real-world

applications.

3. Dataset

The proposed method is based on a CNN, which needs to

be trained with large-scale training data. In this task, docu-

ment deformation can be represented as a 3D mesh, surface

normals, 2D flow etc. Accurately capturing it in any form in

the real world is difficult. Additional hardware like a range

camera or calibrated stereo vision system is required, while

the accuracy of the estimated deformation usually depends

on the cost of the hardware. Furthermore, it is almost im-

possible to manually fold/distort document papers that can

cover all real-world situations.

We consider using synthetic data for training, a common

step in recent deep learning systems [31, 26]. This allows

full control over the variations in the dataset, such as 3D

mesh shape, illumination, material, etc.

One straightforward idea is to directly render distorted

documents in 3D rendering engines. This is however im-

practical due to the following reasons. First, physically-

correct 3D paper meshes are hard and slow to generate using

physical simulation [22]. Second, rendering via path trac-

ing is also time-consuming, e.g. it takes around 1 minute to

render an image in [6]. Rendering 100K images would take

more than two months.

3.1. Distorted Image Synthesis in 2D

We directly synthesize training images in 2D. Though

the underlying physical modeling is neglected, manipulat-

ing a 2D mesh is much easier and the images are faster to

generate. As our purpose is to map the distorted paper to the

rectified one, the data synthesis is the inverse process, that

is, we warp the rectified image into different distortions.

When creating the distortion maps, we follow the fol-

lowing empirical guidelines:

i) A piece of real paper is a locally-rigid fabric. It will

not expand or compress. The deformation at one point

will propagate spatially.

ii) There are two kinds of distortions: folds and curves

generating creases and paper curls. In the real world

there is usually a mix of these two basic distortions.

We first collect a large amount of flat digital documents

including papers, books and magazine pages. We then warp

these images as shown in Fig. 2. The procedure is detailed

below.

Perturbed mesh generation: Given an image I , we im-

pose an m × n mesh M on it to provide control points for

warping. A random vertex p is selected on M as the initial

deformation point. The direction and strength of the de-

formation is denoted as v and is also randomly generated.

Finally, based on observation i), v is propagated to other

vertices by weight w. The vertices on the distorted mesh

are computed as pi + wv, ∀i.
It is crucial to define w. As p and v define a straight line,

we first compute the normalized distance d between each

vertex and this line, and define w as a function of d. Based

on observation ii), we define a function for each distortion

type. For folds:

w =
α

d+ α
, (2)

and for curves:

w = 1− dα, (3)

where α controls the extent of the deformation propagation.

Overall, a larger α leads w towards 1, which means all other
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Figure 3. Network architecture. Our network is a stack of two U-Nets. The network splits and produces a forward mapping y1 from the

output of the first U-Net. The same loss applied at y2 is also applied at y1. Then y1 is concatenated with the output feature map of the

first U-Net and serves as the input for the second U-Net. c© represents the concatenation operator. y2 can be directly used to generate the

rectified image.

(a) (b) (c) (d)
Figure 4. Effects of deformation functions. (a) and (b) show the

fold effect based on Eq. 2. (a) for large α, (b) for small α. (c) and

(d) show the curve effect based on Eq. 3. (c) for large α and (d)

for small α.

Figure 5. Sample images in the synthetic dataset.

vertices share the same deformation as p making the defor-

mation more global, while a small α limits the deformation

to the local area around p. The effects of the two functions

are demonstrated in Fig. 4.

Perturbed image generation: The perturbed mesh pro-

vides a sparse deformation field. We interpolate it linearly

to build a dense warping map at pixel level. The perturbed

image can then be generated by applying the warping map

to the original image. We synthesized 100K images on

a single CPU in this way. Each image contains up to 19

synthetic distortions (30% are curving distortions and 70%

folding). Curving needs to preserve that the Gaussian cur-

vature should be 0 everywhere while folding is arbitrary.

Some samples are shown in Fig. 5.

3.2. Data augmentation

Models trained on synthetic data may not generalize well

to real data due to the gap between real and synthetic data.

The problem can be eased by domain adaption, for exam-

ple, using Generative Adversarial Networks (GAN) [26].

However, large scale real-world data are not available. We

alleviate this problem by augmenting the synthesized im-

ages with various transformations. First, we use the texture

images from the Describable Texture Dataset (DTD) [4] to

produce various background textures. We then add jitter

in the HSV color space to magnify illumination and paper

color variations. A projective transform is further applied

to cope with viewpoint change. Our experiments show that

these data augmentation methods greatly improve the net-

work generalization abilities.

4. DocUNet

4.1. Network Architecture

Similar to semantic segmentation, we design our net-

work to enforce pixel-wise supervision. We select U-

Net [25] as our base model due to its simplicity and effec-

tiveness in semantic segmentation tasks. Basically U-Net

is a Fully Convolutional Network [17]. It contains a series

of downsampling layers followed by a series of upsampling

layers. The feature maps are concatenated between down-

sampling layers and upsampling layers. Note that we mod-

ify the padding scheme in the original U-Net implementa-

tion to make the input and output of the network have the

same spatial size.

However, the output of a single U-Net may not be sat-

isfactory and should be refined. Inspired by the work of

successive predictions and progressive refinement [23, 3],

we stack another U-Net at the output of the first U-Net as a

refiner.

In our network, as shown in Fig. 3, we have one layer

to convert the deconvolutional features into the final output

(x, y). The first U-Net splits after the last deconvolution

layer. The deconvolution features of the first U-Net and the

intermediate prediction y1 are concatenated together as the

input of the second U-Net. The second U-Net finally gives

a refined prediction y2, which we use as the final output of

our network. We apply the same loss function to both y1
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and y2 during training. However, at test time, only y2 is

used as the output of the network.

The input to the network is S ∈ ℜMs×Ns×3 and the out-

put is a mapping F ∈ ℜMs×Ns×2 from the distorted image

to the rectified image. Different from semantic segmenta-

tion which is a pixel-wise classification problem, comput-

ing F is a regression process. The output of the semantic

segmentation network usually has C channels where C is

the number of the semantic classes. The proposed network

only outputs two channels for the (x, y) coordinates.

4.2. Loss Function

We define the loss function as a combination of an

element-wise loss and a shift invariant loss. An L2 element-

wise loss is:

Le =
1

n

∑

i

(yi − y∗i )
2, (4)

where n is the number of elements in F , yi is the predicted

value at index i and y∗i is the corresponding ground truth

value.

The shift invariant loss Ls does not care about the abso-

lute value of yi in F . It enforces that the difference between

yi and yj should be close to that between y∗i and y∗j . So Ls

can be written as:

Ls =
1

2n2

∑

i,j

((yi − yj)− (y∗i − y∗j ))
2. (5)

Assuming di = yi − y∗i , Eq. 5 can be written as:

Ls =
1

2n2

∑

i,j

(di − dj)
2

=
1

2n2

∑

i,j

(d2i + d2j − 2didj)

=
1

n

∑

i

d2i − (
1

n

∑

i

di)
2.

(6)

The first term is just an element-wise loss. The second term

decreases the loss if the distance between two elements is

similar to that in the ground truth. This loss is also known

as Scale-Invariant Error [7]. The weights of the two terms

are the same in Eq. 5. We can assign different weights to

these two terms during training. We also observe that the

L1 loss is better than the L2 loss. So we rewrite the loss

function as:

Lf =
1

n

∑

i

|di| −
λ

n
|
∑

i

di|, (7)

where λ controls the strength of the second term. We use

0.1 in all our experiments.

The elements in F corresponding to the background pix-

els in S have a constant negative value of -1 as described

in section 3. So part of the loss in Eq. 7 is due to the

background. Actually it is not necessary for the network to

precisely regress these elements to -1. Any negative value

should suffice. Thus, we use hinge loss for the background

pixels:

Lb =
1

n

∑

i

max (0, yi), (8)

while using Eq. 7 for the foreground pixels only.

5. Experiments

We first introduce our benchmark for the evaluation of

the rectification of distorted paper documents in the wild

from a single image. Then we evaluate our proposed

learning-based method and compare the results with a prior

art non-learning-based method [27].

5.1. Benchmark

Images: The images in this benchmark are photos of

physical paper documents captured by mobile cameras. We

collected 65 paper documents of various content/format,

and for each document we took two photos, resulting in

130 images in total. The benchmark contains both the orig-

inal photos and the tightly cropped ones. We use the latter

one in our experiments because we focus on paper dewarp-

ing rather than localizing the document in the image. The

benchmark is created considering the following factors:

i) Document types. Our selected documents include var-

ious types such as receipts, letters, fliers, magazines,

academic papers and books. Most of them contain a

mix of text and figures. Some of them are pure text

and others contain only images. Some are in color and

some are black and white. Most of the text is in En-

glish, while some is in Japanese and Chinese. Some

music sheets are also included. Most of the documents

have a white background, but documents with different

background colors are also included.

ii) Distortions. The original flat paper documents were

physically distorted by different people. Each docu-

ment was deformed into two different shapes. In order

to assure the diversity of the benchmark, we included

both easy and hard cases. For easy cases, the document

may only have one crease or one curl or a “common

fold” [6]. For hard cases, the document may be heavily

crumpled. We left few documents flat and untouched

on purpose to test if a method will preserve them. In

particular, 94.6% of the images contain curving; 31.7%

contain more than 6 folds; 8.5% are paper crumples,

which are challenging cases.

iii) Environments. The photos were taken by two people

with two different cellphones, under various indoor and
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(a) original photos

(b) document centered cropped images

(c) scans from a flatbed scanner
Figure 6. Samples in the benchmark.

outdoor scenes, with different illumination conditions:

sunlight, indoor lights or the cellphone’s built-in flash

light. We also changed the viewpoint to some extent.

The resulting benchmark contains very diverse exam-

ples and can reasonably approximate the most common use

cases.

Ground truth: Before folding the collected paper docu-

ments, we scanned them using a flatbed scanner. We ad-

justed the size and overall color of the obtained images

to match the original flat documents as much as possible.

Fig. 6 shows some examples in our benchmark.

Evaluation Scheme: Previous work suggests two differ-

ent evaluation schemes. One is based on Optical Character

Recognition (OCR) accuracy and the other is based on the

measurement of image similarity. We choose the latter, as

OCR accuracy heavily depends on which OCR module is

used, and cannot deal with documents that mostly contain

figures. For image similarity we use Multi-Scale Structural

Similarity (MS-SSIM) [33], as the task is mainly about doc-

ument structure rather than pixel-level color accuracy. We

also adopt a method that uses dense SIFT flow [15] to eval-

uate the Local Distortion (LD) proposed by You et al. [36].

Single scale SSIM is calculated on all image patches in

an image. It is based on the similarity of statistical measures

including the mean value and variance within each image

patch. The implementation of MS-SSIM builds a Gaussian

pyramid of the input image and the target image. MS-SSIM

is a weighted sum of the SSIM computed at each level. Be-

sides the weighted sum, we also report single scale SSIM at

different levels.

Method MS-SSIM LD time(s)

Tian et al. [27] 0.13 33.69 212

Ours 0.41 14.08 4

Table 1. Comparison between our method and [27]. Methods

are evaluated by Multi-Scale Structural Similarity (MS-SSIM) and

Local Distortion (LD). For MS-SSIM, higher value means higher

similarity with ground truth. For LD, lower value means lower

displacement. Our method achieves much better and much faster

results compared to [27].

�ì�X�ð�ì�ô�ï �ì�X�ï�ó�ò�î �ì�X�ï�ñ�ñ�ï

�ì�X�ð�ð�ò�ò

�ì�X�ñ�ð�î�ï

�ì�X�í�ð�õ�ñ �ì�X�í�î�ì�ñ �ì�X�í�ì�í �ì�X�í�í�ð�ð �ì�X�í�í�í�ð

�ì

�ì�X�í

�ì�X�î

�ì�X�ï

�ì�X�ð

�ì�X�ñ

�ì�X�ò

�í �î �ï �ð �ñ

�^
�^

�/�D

�^ �����o��

�K�µ�Œ�• �d�]���v�����v�����E���Œ���•�]�u�Z���v

Figure 7. Structural Similarity comparison at different

scales. At every scale, our method outperforms Tian and

Narasimhan [27]. Scale 1 is the original image and scale 5 is the

image at the top of the Gaussian pyramid.

5.2. Experiment Setup

We use 90K images in our dataset for training and the

rest for validation. We use Adam [12] as our optimizer.

The training starts with a learning rate of 0.0002 and re-

duces to one fifth of that when the validation loss reaches a

plateau. For fair comparison, none of the documents used

in the benchmark are used to create the synthetic data for

training. In fact, the benchmark contains more diverse data

than the training set, as a way to test the generalization abil-

ity of our method.

We compare our results quantitatively with Tian and

Narasimhan [27] on our benchmark using their publicly

available code. We also compare our results qualitatively

with two recent works by You et al. [36] and Das et al. [6].

Given that there is no publicly available code for these

methods, we test our trained model on their examples shown

in their papers.

We resize all output images and target images to have

the same 598, 400 area, while keeping their aspect ratio. We

use a 5-level-pyramid for MS-SSIM and the weight for each

level is 0.0448, 0.2856, 0.3001, 0.2363, 0.1333, which is in-

herited from the original implementation. For SIFT flow,

we use the code provided by the author with default param-

eters.

5.3. Results

Our benchmark evaluation shows that the proposed

method outperforms the method proposed by Tian and
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